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Abstract 

An important problem for engineering students is learning 
how to communicate.   Based on collaborations with 
engineering design instructors, we are creating a system, 
Design Buddy, that is intended to help students learn how to 
explain their designs.  The input is a sketched comic strip 
with graphical annotations that indicate forces and motions, 
plus a structured language system that enables students to 
enter causal models.  The system provides feedback by 
comparing their explanation to its own reasoning about how 
the design might work, using qualitative reasoning to detect 
contradictions and gaps in the causal explanation.  This 
paper focuses on a structured language system to provide 
information that is not easily communicated via sketching, 
and the new technique of Sequential Explanation Analysis 
to provide feedback based on the consistency of a student’s 
explanation, both internally and with physical laws. Results 
from a pull-out study with engineering design students 
indicating that the system can indeed help them improve 
their explanations are also described. 

Introduction 

Communication is an important skill for engineers.  They 
typically work in teams, and often work with clients, when 
creating and refining designs.  Consequently, at 
Northwestern University students learning design are 
taught communication skills at the same time.  Sketching is 
used ubiquitously in the early stages of engineering design.  
Consequently, instructors place a strong premium on the 
ability to communicate ideas via sketching.  These 
instructors tell us that, unfortunately, this proves to be 
particularly difficult for most students.  This motivated the 
creation of Design Buddy, a sketch-based system that is 
being built to help students learn to explain designs 
through sketches.  [Wetzel & Forbus 2009] described a 
critiquing algorithm which used only sketched input, and a 
corpus analysis to argue for its generality.  The new 
contributions here are (1) the extension of the critique 
algorithm to include causal explanations, entered by the 
student using a structured language interface in 
conjunction with sketching and (2) the results of a pull-out 
study with engineering students, which suggests that 

students can indeed improve their explanations by using 
the system.   
 We start by briefly reviewing CogSketch [Forbus et al., 
2008], which Design Buddy is built upon.  Then we 
illustrate the system’s operation with a simple example.  
Next we describe the critique algorithm for generating 
feedback.  The results of the pull-out study are next, 
followed by related & future work. 

CogSketch: The essentials 

CogSketch is an open-domain sketch understanding 
system.1  Most sketch understanding systems (cf. 
[Hammond & Davis, 2005]) focus on recognition, 
automatically identifying what the user draws as a member 
of a relatively small vocabulary of concepts.  Such systems 
can work well in tightly constrained domains, like 
schematic diagrams or military symbology, but the range 
of concepts that arise in engineering design is huge.  
Moreover, unlike schematics, most concepts do not have 
agreed-upon visual symbols, and in reasoning about shapes 
and motion, the specific geometry of the sketch matters.  
Consequently, such systems are not good fits for this 
problem.  By contrast, CogSketch provides several 
interfaces for specifying conceptual labels for categorizing 
what a glyph depicts.  The labels are drawn from an 
OpenCyc-derived knowledge base, which includes 
extensions for qualitative and analogical reasoning, 
containing over 58,000 concepts.  While even this range of 
concepts is not sufficient to completely cover engineering 

                                     
1 CogSketch is publicly available for download at 

http://www.qrg.northwestern.edu/software/cogsketch/index.html 

 
Figure 1: Sketch of a simple push-button with spring 

return. 
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design, it is already several orders of magnitude larger than 
what recognition-based systems can handle.   
 Figure 1 shows a simple behavior for illustration.  Every 
CogSketch sketch consists of a set of subsketches.  Figure 
1 illustrates the metalayer, where every subsketch is 
treated as a glyph.  Arrows drawn between subsketches 
express binary relationships between them.  In Design 
Buddy, every subsketch is a qualitative state of the 
design’s intended behavior, and the arrows between them 
are restricted to indicate state transitions.  Once the student 
draws the first state, the rest of the states are typically 
created by cloning and modifying the first state, which 
greatly reduces drawing time.  Note that, unlike traditional 
comic strips which impose a linear flow of time, these 
comic graphs [Forbus et al 2003] can include ambiguity 
(via multiple transitions out of a state), alternate paths (via 
multiple transitions into a state), and oscillation (via 
cycles), which broadens its expressive range. 

 Figure 2 is a close-up of the first state of the behavior in 
Figure 1.   Each sketch is made of glyphs, a collection of 
polylines that the user draws to depict an entity.  
Segmentation is manual, i.e., a button is pressed to start a 
glyph and pressed again to end it.  This simple mechanism 
avoids using timeouts or pen-up heuristics that our users 
find limiting, especially when drawing complex shapes.  
The ink of a glyph is visually analyzed to construct 
qualitative spatial representations.  Experiments with 
CogSketch indicate that it provides a reasonable model of 
aspects of human visual processing [Lovett et al 2009], 
providing a useful substrate for reasoning about mechanics.   
For example, it computes RCC8 relationships [Cohn 1996] 
among others to detect mechanical contact.  CogSketch can 
also decompose a shape into its component edges and find 
the qualitative direction of the surface normal for a given 
contact surface pair. This spatial information is necessary 
for understanding the mechanics of the design. 
 Basic glyphs represent entities, and can be labeled with 
concepts from the knowledge base.  For example, in Figure 
2, the button is labeled as instance of the concept 
RigidObject and the spring is labeled as an instance of 
Spring-Device.  Relationship glyphs, which are drawn as 

arrows, are labeled using binary relationships, like 
causality in Figure 1.  Annotation glyphs are used to add 
additional properties to the entity depicted by a glyph, e.g., 
the numerical value of a parameter or the direction of 
motion or forces.  In Figure 2, an external force acting on 
the button is indicated by the arrow at the top.   

Design Buddy Example 

Consider the simple push-button with spring return 
illustrated in Figure 1.  The student starts constructing the 
explanation of their design by drawing the comic strip.  
Once they start drawing, they also use a structured 
language interface to add information about the design.  As 
explained below, this interface can provide information 
that is hard to sketch, such as indicating causal 
relationships between specific aspects of states, as opposed 
to whole states as in Figure 1.  Figure 3 illustrates the 
structured language interface that Design Buddy provides 
for entering such information.  While the surface form is 
textual, the underlying representation produced is predicate 
calculus, to support reasoning.   

 At any point, the user can ask for feedback.  Design 
Buddy then analyzes the combination of the sketch and 
structured language input to look for inconsistencies and/or 
gaps in the explanation.  These analyses result in questions 
and critiques for the user.  In this case it finds three 
problems, as Figure 4 illustrates.  The first is that the force 
annotation indicates that the button is being forced upward 

 
Figure 2: The first state of the example behavior.  The arrow is 

a force annotation, indicating the intended direction of an 

applied force. 

 
Figure 3: Structured language interface for complementing 

information in the sketch 

 
Figure 4: Design Buddy’s feedback on the explanation.  The top part 

is generated by STV while the bottom three sentences are generated 

by SEA. (See “Generating Feedback”) 



in the initial state, while the sketch has it moving 
downward.  The second is that the first sentence in Figure 
3 has the button moving down in response to the 
compressed spring in state two when in fact it should pop 
back up.   The third is that the spring is described as being 
rigid in the third state, which is inconsistent with it being a 
spring.  After the student fixes these problems, by rotating 
the force arrow in the first state and changing the spring to 
be described as stretched in the third state, Design Buddy 
is satisfied with the explanation.   
 Next we describe the interface for structured language 
explanations, followed by our algorithm for generating 
feedback. 

Structured Language Input 

While sketching is very flexible, some things are best 
expressed in natural language.  Robust natural language 
understanding in domains this broad remains beyond the 
state of the art.  Consequently, we use forms for 
constructing restricted sentences, using templates that can 
be rendered into understandable natural language, but 
whose internal form is predicate calculus.2  The basic 
sentence structure we use is: 

In <context> <subject> <verb> <object>. 
Here <context> is the state (i.e. subsketch) being 
discussed.  Once the user has selected a context for a 
sentence, the <subject> field is populated with entities 
represented by glyphs in that subsketch.  The <verb> field 
supports stating how <subject> moves or rotates, whether 
or not it possesses some property (e.g., is rigid), or that 
<subject> touches <object>.  The possibilities for 
<object> vary according to the verb selected, as shown in 
Table 1.  One example is the second sentence in Figure 3: 
“In state 2 Button touches electrical contacts.” 

Table 1: Template verbs and their possible objects as used in the 

structured language interface 

Verb Possible Object Field Values 

moves left, right, up, down, quadrants 1-4 

rotates clockwise, counterclockwise 

does not move None 

does not rotate None 

is rigid, fixed, springy, compressed, stretched 

touches all other objects in the subsketch 

 Sentences can either be simple or compound.  To create 
a compound sentence, the user clicks the arrow button to 
the right of the object, revealing additional fields.  The 
template for a compound sentence is two simple sentences 
joined with a causal relationship: 

In <context> <subject1> <verb1> <object1>  
<causal> <subject2> <verb2> <object2>. 

<causal> is either A causes B (e.g. “which causes”) or A 
prevents B (e.g., “which prevents”). Thus the student can 
make causal claims about specific aspects of the behavior 
and/or properties of components in their design.  Returning 

                                     
2
 This interface is inspired by [Frank & Szekely, 1998]. 

again to Figure 3, the first sentence is: “In state 2, Spring is 
compressed which causes button moves down.”3 
 Whenever a field is edited, the program checks to see if 
the template is completely filled out.  If so, a green check 
mark appears next to it in the Tell window, letting the user 
know they have completed the sentence.  The fact that the 
student asserted the sentence is then stored in the shared 
underlying knowledge representation.  

Generating Feedback 

Once the student completes the sketch and structured 
language input, they can request feedback. The goal of 
Design Buddy is to verify that the explanation given (i.e., 
the structured language and sketched input) is consistent 
internally and physically. If there are contradictions or 
unfounded claims, then Design Buddy provides feedback 
that highlights them, so that the student can debug their 
explanation.   
 To understand the possible behaviors of the system, 
Design Buddy uses qualitative mechanics (QM) [Nielsen, 
1988; Kim 1993], which describes the physical interactions 
between objects via contact relationships and forces in two 
dimensions.  Qualitative models are necessary in this task 
for two reasons.  First, few numerical parameters are 
available at this stage in the design process.  Second, it is 
important to provide feedback about causal theories in a 
human-like way, to help enculturate students in 
engineering practice.  Our qualitative mechanics reasoning 
currently handles the behavior of arbitrarily-shaped rigid 
bodies, springs, and gears.   
 Design Buddy uses two algorithms to produce feedback.  
The first is State Transition Verification [Wetzel & Forbus, 
2009], which focuses on the sketch alone.  We summarize 
it briefly below for completeness.  The second is 
Sequential Explanation Analysis, which combines the 
sketch and structured language explanation.   
 
State Transition Verification (STV) takes as input a 
comic graph.  It starts by examining each state transition to 
produce a list of compatibility constraints for the transition 
to occur, assuming the motion that the student described is 
correct. An example constraint in figure 1 is that based on 
the relative positions of the objects between state 1 and 
state 2, the button must move upwards.  It then looks at the 
first state in each pair, using QM to predict what motions 
can actually occur.  If the motion predicted by QM does 
not match the compatibility constraints, there is a 
contradiction within the explanation.  For each type of 
contradiction there is a canned explanation template that is 
used in generating textual output.  In addition to providing 
some direct critiques, QM infers useful facts such as 
surface contacts and normals, plus the net force and next 
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 Currently we are more concerned with expressiveness than 

perfect grammar. 



motion of objects in each subsketch, all of which are used 
in the following step. 
 
Sequential Explanation Analysis checks the structured 
language input statements against the sketch to see if they 
are mutually consistent.   Sentences are processed in the 
order provided, since they can lead to additional 
assumptions about the design.  The analysis marks each 
fact as either: (1) proven, i.e., inferred based on what is 
known from the sketch and the previous sentences 
processed, (2) contradictory, i.e., inconsistent with the 
beliefs about the design based on the analysis so far, or (3) 
unproven, i.e., neither a consequence of the analysis so far 
nor inconsistent with it.  Unproven facts are assumed to be 
true while processing subsequent sentences, because they 
represent new information about the design. 
 Sentences in the structured language explanation are 
verified based on their content.  Statements about contact 
are tested against the visual representation computed for 
the state in question.  Statements about motion or rotation 
are tested against the qualitative mechanics analysis of the 
sketched comic graph.  Statements about physical state 
(i.e., “is” statements) are tested against the conceptual 
labels provided for glyphs in the comic graph.  Statements 
about causality are tested by assuming the causal 
antecedent and seeing if (a) the causal effect is believed 
and (b) that the causal antecedent is one of the assumptions 
underlying belief in the causal effect, as found by 
analyzing the dependencies in the underlying truth 
maintenance system. 
 When generating feedback for the explanation, the states 
of facts in the structured language explanation are used to 
generate part of the natural language response.  (The rest is 
from state transition verification.)  Contradictory 
statements lead to a contrast template being used, e.g., 
“You said that the stopper moves to the right, but I think it 
will move to the left.”  Unproven statements that should 
have been derivable lead to a gap template being used, e.g., 
“You said that the stopper moves right, but it’s not clear 
why that will happen.”  If all statements that should be 
provable are indeed proven, then Design Buddy simply 
says “Everything you told me made sense.” 

Exploratory Study 

In Fall 2009 we performed an exploratory study to gather 
formative feedback with undergraduate students taking an 
engineering design and communications (EDC) class.  
Here we focus on the following questions: (1) Can students 
use the feedback provided by Design Buddy to produce 
consistent explanations?  (2) How much feedback is 
provided by SVT versus SEA?   

Procedure 

The study involved seven participants, paid hourly, all 
engineering undergraduate students taking EDC.  One-on-
one interviews were conducted in single sessions lasting 

between 45 minutes and 80 minutes depending on their 
availability and interest in continuing.  
 The participants used a tablet PC with CogSketch for the 
experiment. Two kinds of data were collected: (1) Video 
and audio were captured by screen-capture software (for 6 
of the 7 students) and (2) the CogSketch sketch files 
produced by the student over the course of the experiment. 
Sketch files retain their edit history, and CogSketch can 
replay the drawing of the sketch and export detailed timing 
data for analysis. 
 The experiment protocol consisted of four parts. First, 
the students received a brief tutorial on pen-based 
computing and CogSketch.  Second, they were asked to 
explain their current design class project to the interviewer, 
while using CogSketch to draw it.  (The purpose of this 
step was to gather data about future breadth requirements 
and to see what language they would use if unconstrained.)  
The third step was a tutorial on Design Buddy, focusing on 
using the interface to create explanations.  The fourth step 
tested the explanation system directly: Students were asked 
to explain to Design Buddy how a retractable ball-point 
pen works.  The students were provided with a real pen to 
handle and think about.  The pen was opaque and students 
were not allowed to disassemble it.  

Preliminary Findings 

On average students spent under 15 minutes combined on 
the two tutorial sketches, which indicates that not much 
training is required to use the interface.  All of the students 
were able to use Design Buddy to explain how the ink pen 
might work.  The average time to complete an explanation 
was 38 minutes, with the shortest being 28 minutes and the 
longest being 60 minutes.   
 Each student drew a multi-state sketch, used the Tell 
window, and went through several feedback iterations with 
Design Buddy.   On average, students went through 5.5 
cycles of feedback, with the fewest being 3 and the most 
being 8.  Figure 5 shows two sketches of the pen made by 
one student over the course of their session.  The early 
sketch is highly abstract. Design Buddy reported that it 
didn’t seem like any of the parts moved.  This is because 
the student had initially drawn the pen as a single object.  
The student realized that they needed to add more detail to 
their sketch, so they redrew the pen to show the inner 

 
Figure 5: Early sketch (above) contrasted with later version 

(below).  Student sketches changed as they interacted with Design 

Buddy. 



workings.  Most of the students drew sketches detailing the 
inner workings of the pen. 

 One student got around this process; rather than 
depicting how the pen worked internally, they depicted 
what was happening to the pen as viewed from the exterior 
(Figure 6).  This more devious approach still kept the 
student busy for several iterations as they tried using 
different relations and annotations to express the motions. 
 Often students assumed that Design Buddy’s visual 
processing was as robust as a human partner.  For example, 
they would sometimes leave sizeable gaps between parts 
that they meant to be in contact. Other times they would 
forget that they needed to conceptually label a glyph. 
Occasionally they ran across an actual bug in the program.  
Each of these cases required the interviewer to explain 
limitations of the program.  While students found the 
feedback itself clear, tracing back to the specific aspects of 
their explanation that were responsible for a reported 
problem was often difficult.  We allowed the students to 
try diagnosing the problems on their own until they got 
stuck, at which point we stepped in.  When it wasn’t 
obvious to the experimenter either, we showed them how 
to use CogSketch’s built-in reasoning browser to figure it 
out definitively.  This browser is not student-friendly: It 
exposes the underlying predicate calculus form of 
statements and includes many facts necessary for 
implementing the reasoning but irrelevant to what the 
student needs to know.  We plan on adding a structured 
explanation system [Forbus et al 1999] to provide a 
filtered, student-friendly drill-down system to address this 
problem. 

 How much utility does Sequential Explanation Analysis 
add over State Transition Verification?  To explore this 
question, we examined how often advice was provided by 
each.  Overall, students received 51% of their feedback 
from SEA.  Student 194 (Figure 7) received no SEA 
feedback at all because their explanation was too complex 
for the template sentences.  The student wrote their 
explanation in the Notes field for the sketch instead, which 
was not accessible to Design Buddy. 
 Having the students explain their design projects to the 
experimenter, as opposed to Design Buddy, provided 
information about their default communication strategies.  
When explaining to the experimenter, students used 

language more heavily than their sketches.  When 
explaining to Design Buddy, they put more information 
into the sketch by adding conceptual labels, additional 
states, and drawing forces.  Students primarily used 
structured language for describing motion.  Students for 
the most part had no suggestions for additions to the 
structured language, though some did suggest alternate 
phrasings for existing phrases such as “compresses” 
instead of “is compressed”.  Another student suggested 
adding the ability to talk about multiple states at once.  
Given that our goal is to help students learn to use sketches 
to communicate, these results are encouraging. 

Related Work 

Argumentation and Explanation 

In the Belvedere system [Suthers et al 2001], students used 
a visual language to construct arguments which were then 
critiqued based on their structure.  However, the feedback 
focused on the structure of the arguments and ignored the 
actual content.  Design Buddy, by contrast, incorporates a 
model of some kinds of reasoning an expert does about 
explanations for engineering designs.   

Recognition-based approaches 

Using sketch and speech as input, Bischel et al. [2009] 
were able to train classifiers which distinguished between 
strokes that were gestures versus strokes that were part of 
the depiction of a device.  The gestures included both 
pointing to parts being referred to linguistically and for 
indicating spatial features, such as direction of motion.  We 
observed both kinds of gestures when students were 
communicating with the experimenter, which suggests that 
adding support for gestures could increase the naturalness 
of the interface.  However, spoken language input is 
problematic for many student environments, due to noise, 
the inconvenience of a headset, and the need to avoid 
disturbing others. 
 Recognition-oriented sketch recognition can be used for 
education, in circumstances where teaching people 
conventions for drawing something are important.  For 
example, [Taele & Hammond, 2010] use sketching to teach 
Mandarin Phonetic Symbols.  As noted earlier, in 
engineering design the shapes of parts in designs for 
mechanical domains are determined by physics not by 
convention, as they are for electronics and UML diagrams.   

Discussion & Future Work 

Helping engineering students practice giving explanations 
via sketching will, both we and their instructors believe, 
help them improve their ability to communicate.  The 
structured language interface provides a way for students 
to communicate information that is not always easily 
sketched, such as causal models.  The new technique of 
Sequential Explanation Analysis provides feedback about 

 
Figure 6: A student abstracts out the middle of this ink pen. 

 
Figure 7: Student 194’s explanation was very complex and 

precise, and they were unable to explain it using the template 

sentences. 



the internal consistency of their explanation by comparing 
the structured language explanation with the qualitative 
mechanical analysis of their sketch.   The pull-out study, 
while only involving a small number of students, provides 
strong evidence that the feedback Design Buddy already 
provides can help students improve their explanations. 
 While the progress described in this paper takes us 
closer to our goal, there are still several extensions we plan 
to make before attempting in-class experiments: 
 Richer qualitative reasoning:  Currently we require 
students to draw every qualitative state explicitly in their 
behavior.  For simple designs this is reasonable, but as 
designs get more complex, experienced designers leave out 
“obvious” intermediate states.  Design Buddy will need 
more qualitative reasoning to fill in those missing states, 
and to evaluate when they make assumptions that are 
inconsistent with a student’s explanation.  Moreover, some 
design assignments use non-rigid materials, such as strings, 
and fluids.  We plan on extending our current qualitative 
mechanics reasoner to incorporate qualitative process 
theory [Forbus, 1984] to handle this, with Kim’s bounded 
stuff ontology [Kim 1993] to handle fluids.  
 Richer teleological vocabulary: The structured 
language interface needs to be extended to describe the 
purpose of the design, and explain how the behavior 
(which is the current focus of explanation) leads to this 
purpose being achieved.   
 More types of feedback: Currently Design Buddy’s 
feedback focuses only on consistency in the explanation. 
Equally important is coverage: Does the explanation 
account for all of the important choices in the design?  
Simplicity and clarity are also important, as is detecting 
circularities.  We plan to extend Design Buddy to critique 
explanations along these dimensions as well, as we scale 
up to more complex designs. 
 Additional studies planned: We plan to continue pull-
out studies for formative evaluation, with the goal of 
moving to in-class experiments.  We are also continuing to 
observe instructors providing feedback about design 
sketches, both in classroom group work and in one-on-one 
interactions, to improve Design Buddy’s feedback. 
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