

Design Buddy: Providing Feedback for Sketched Multi-Modal Causal

Explanations

Jon Wetzel and Ken Forbus

Qualitative Reasoning Group, Northwestern University

2133 Sheridan Road, Evanston, IL, 60201, USA

jw@northwestern.edu, forbus@northwestern.edu

Abstract

An important problem for engineering students is learning
how to communicate. Based on collaborations with
engineering design instructors, we are creating a system,
Design Buddy, that is intended to help students learn how to
explain their designs. The input is a sketched comic strip
with graphical annotations that indicate forces and motions,
plus a structured language system that enables students to
enter causal models. The system provides feedback by
comparing their explanation to its own reasoning about how
the design might work, using qualitative reasoning to detect
contradictions and gaps in the causal explanation. This
paper focuses on a structured language system to provide
information that is not easily communicated via sketching,
and the new technique of Sequential Explanation Analysis
to provide feedback based on the consistency of a student’s
explanation, both internally and with physical laws. Results
from a pull-out study with engineering design students
indicating that the system can indeed help them improve
their explanations are also described.

Introduction

Communication is an important skill for engineers. They
typically work in teams, and often work with clients, when
creating and refining designs. Consequently, at
Northwestern University students learning design are
taught communication skills at the same time. Sketching is
used ubiquitously in the early stages of engineering design.
Consequently, instructors place a strong premium on the
ability to communicate ideas via sketching. These
instructors tell us that, unfortunately, this proves to be
particularly difficult for most students. This motivated the
creation of Design Buddy, a sketch-based system that is
being built to help students learn to explain designs
through sketches. [Wetzel & Forbus 2009] described a
critiquing algorithm which used only sketched input, and a
corpus analysis to argue for its generality. The new
contributions here are (1) the extension of the critique
algorithm to include causal explanations, entered by the
student using a structured language interface in
conjunction with sketching and (2) the results of a pull-out
study with engineering students, which suggests that

students can indeed improve their explanations by using
the system.
 We start by briefly reviewing CogSketch [Forbus et al.,
2008], which Design Buddy is built upon. Then we
illustrate the system’s operation with a simple example.
Next we describe the critique algorithm for generating
feedback. The results of the pull-out study are next,
followed by related & future work.

CogSketch: The essentials

CogSketch is an open-domain sketch understanding
system.1 Most sketch understanding systems (cf.
[Hammond & Davis, 2005]) focus on recognition,
automatically identifying what the user draws as a member
of a relatively small vocabulary of concepts. Such systems
can work well in tightly constrained domains, like
schematic diagrams or military symbology, but the range
of concepts that arise in engineering design is huge.
Moreover, unlike schematics, most concepts do not have
agreed-upon visual symbols, and in reasoning about shapes
and motion, the specific geometry of the sketch matters.
Consequently, such systems are not good fits for this
problem. By contrast, CogSketch provides several
interfaces for specifying conceptual labels for categorizing
what a glyph depicts. The labels are drawn from an
OpenCyc-derived knowledge base, which includes
extensions for qualitative and analogical reasoning,
containing over 58,000 concepts. While even this range of
concepts is not sufficient to completely cover engineering

1 CogSketch is publicly available for download at

http://www.qrg.northwestern.edu/software/cogsketch/index.html

Figure 1: Sketch of a simple push-button with spring

return.

jenn
Typewritten Text
Wetzel, J. and Forbus, K. (2010). Design Buddy: Providing Feedback for Sketched Multi-Modal Causal Explanations. In proceedings of the 24th International Workshop on Qualitative Reasoning. Portland, Oregon.

jenn
Typewritten Text

jenn
Typewritten Text

design, it is already several orders of magnitude larger than
what recognition-based systems can handle.
 Figure 1 shows a simple behavior for illustration. Every
CogSketch sketch consists of a set of subsketches. Figure
1 illustrates the metalayer, where every subsketch is
treated as a glyph. Arrows drawn between subsketches
express binary relationships between them. In Design
Buddy, every subsketch is a qualitative state of the
design’s intended behavior, and the arrows between them
are restricted to indicate state transitions. Once the student
draws the first state, the rest of the states are typically
created by cloning and modifying the first state, which
greatly reduces drawing time. Note that, unlike traditional
comic strips which impose a linear flow of time, these
comic graphs [Forbus et al 2003] can include ambiguity
(via multiple transitions out of a state), alternate paths (via
multiple transitions into a state), and oscillation (via
cycles), which broadens its expressive range.

 Figure 2 is a close-up of the first state of the behavior in
Figure 1. Each sketch is made of glyphs, a collection of
polylines that the user draws to depict an entity.
Segmentation is manual, i.e., a button is pressed to start a
glyph and pressed again to end it. This simple mechanism
avoids using timeouts or pen-up heuristics that our users
find limiting, especially when drawing complex shapes.
The ink of a glyph is visually analyzed to construct
qualitative spatial representations. Experiments with
CogSketch indicate that it provides a reasonable model of
aspects of human visual processing [Lovett et al 2009],
providing a useful substrate for reasoning about mechanics.
For example, it computes RCC8 relationships [Cohn 1996]
among others to detect mechanical contact. CogSketch can
also decompose a shape into its component edges and find
the qualitative direction of the surface normal for a given
contact surface pair. This spatial information is necessary
for understanding the mechanics of the design.
 Basic glyphs represent entities, and can be labeled with
concepts from the knowledge base. For example, in Figure
2, the button is labeled as instance of the concept
RigidObject and the spring is labeled as an instance of
Spring-Device. Relationship glyphs, which are drawn as

arrows, are labeled using binary relationships, like
causality in Figure 1. Annotation glyphs are used to add
additional properties to the entity depicted by a glyph, e.g.,
the numerical value of a parameter or the direction of
motion or forces. In Figure 2, an external force acting on
the button is indicated by the arrow at the top.

Design Buddy Example

Consider the simple push-button with spring return
illustrated in Figure 1. The student starts constructing the
explanation of their design by drawing the comic strip.
Once they start drawing, they also use a structured
language interface to add information about the design. As
explained below, this interface can provide information
that is hard to sketch, such as indicating causal
relationships between specific aspects of states, as opposed
to whole states as in Figure 1. Figure 3 illustrates the
structured language interface that Design Buddy provides
for entering such information. While the surface form is
textual, the underlying representation produced is predicate
calculus, to support reasoning.

 At any point, the user can ask for feedback. Design
Buddy then analyzes the combination of the sketch and
structured language input to look for inconsistencies and/or
gaps in the explanation. These analyses result in questions
and critiques for the user. In this case it finds three
problems, as Figure 4 illustrates. The first is that the force
annotation indicates that the button is being forced upward

Figure 2: The first state of the example behavior. The arrow is

a force annotation, indicating the intended direction of an

applied force.

Figure 3: Structured language interface for complementing

information in the sketch

Figure 4: Design Buddy’s feedback on the explanation. The top part

is generated by STV while the bottom three sentences are generated

by SEA. (See “Generating Feedback”)

in the initial state, while the sketch has it moving
downward. The second is that the first sentence in Figure
3 has the button moving down in response to the
compressed spring in state two when in fact it should pop
back up. The third is that the spring is described as being
rigid in the third state, which is inconsistent with it being a
spring. After the student fixes these problems, by rotating
the force arrow in the first state and changing the spring to
be described as stretched in the third state, Design Buddy
is satisfied with the explanation.
 Next we describe the interface for structured language
explanations, followed by our algorithm for generating
feedback.

Structured Language Input

While sketching is very flexible, some things are best
expressed in natural language. Robust natural language
understanding in domains this broad remains beyond the
state of the art. Consequently, we use forms for
constructing restricted sentences, using templates that can
be rendered into understandable natural language, but
whose internal form is predicate calculus.2 The basic
sentence structure we use is:

In <context> <subject> <verb> <object>.
Here <context> is the state (i.e. subsketch) being
discussed. Once the user has selected a context for a
sentence, the <subject> field is populated with entities
represented by glyphs in that subsketch. The <verb> field
supports stating how <subject> moves or rotates, whether
or not it possesses some property (e.g., is rigid), or that
<subject> touches <object>. The possibilities for
<object> vary according to the verb selected, as shown in
Table 1. One example is the second sentence in Figure 3:
“In state 2 Button touches electrical contacts.”

Table 1: Template verbs and their possible objects as used in the

structured language interface

Verb Possible Object Field Values

moves left, right, up, down, quadrants 1-4

rotates clockwise, counterclockwise

does not move None

does not rotate None

is rigid, fixed, springy, compressed, stretched

touches all other objects in the subsketch

 Sentences can either be simple or compound. To create
a compound sentence, the user clicks the arrow button to
the right of the object, revealing additional fields. The
template for a compound sentence is two simple sentences
joined with a causal relationship:

In <context> <subject1> <verb1> <object1>
<causal> <subject2> <verb2> <object2>.

<causal> is either A causes B (e.g. “which causes”) or A
prevents B (e.g., “which prevents”). Thus the student can
make causal claims about specific aspects of the behavior
and/or properties of components in their design. Returning

2
 This interface is inspired by [Frank & Szekely, 1998].

again to Figure 3, the first sentence is: “In state 2, Spring is
compressed which causes button moves down.”3
 Whenever a field is edited, the program checks to see if
the template is completely filled out. If so, a green check
mark appears next to it in the Tell window, letting the user
know they have completed the sentence. The fact that the
student asserted the sentence is then stored in the shared
underlying knowledge representation.

Generating Feedback

Once the student completes the sketch and structured
language input, they can request feedback. The goal of
Design Buddy is to verify that the explanation given (i.e.,
the structured language and sketched input) is consistent
internally and physically. If there are contradictions or
unfounded claims, then Design Buddy provides feedback
that highlights them, so that the student can debug their
explanation.
 To understand the possible behaviors of the system,
Design Buddy uses qualitative mechanics (QM) [Nielsen,
1988; Kim 1993], which describes the physical interactions
between objects via contact relationships and forces in two
dimensions. Qualitative models are necessary in this task
for two reasons. First, few numerical parameters are
available at this stage in the design process. Second, it is
important to provide feedback about causal theories in a
human-like way, to help enculturate students in
engineering practice. Our qualitative mechanics reasoning
currently handles the behavior of arbitrarily-shaped rigid
bodies, springs, and gears.
 Design Buddy uses two algorithms to produce feedback.
The first is State Transition Verification [Wetzel & Forbus,
2009], which focuses on the sketch alone. We summarize
it briefly below for completeness. The second is
Sequential Explanation Analysis, which combines the
sketch and structured language explanation.

State Transition Verification (STV) takes as input a
comic graph. It starts by examining each state transition to
produce a list of compatibility constraints for the transition
to occur, assuming the motion that the student described is
correct. An example constraint in figure 1 is that based on
the relative positions of the objects between state 1 and
state 2, the button must move upwards. It then looks at the
first state in each pair, using QM to predict what motions
can actually occur. If the motion predicted by QM does
not match the compatibility constraints, there is a
contradiction within the explanation. For each type of
contradiction there is a canned explanation template that is
used in generating textual output. In addition to providing
some direct critiques, QM infers useful facts such as
surface contacts and normals, plus the net force and next

3
 Currently we are more concerned with expressiveness than

perfect grammar.

motion of objects in each subsketch, all of which are used
in the following step.

Sequential Explanation Analysis checks the structured
language input statements against the sketch to see if they
are mutually consistent. Sentences are processed in the
order provided, since they can lead to additional
assumptions about the design. The analysis marks each
fact as either: (1) proven, i.e., inferred based on what is
known from the sketch and the previous sentences
processed, (2) contradictory, i.e., inconsistent with the
beliefs about the design based on the analysis so far, or (3)
unproven, i.e., neither a consequence of the analysis so far
nor inconsistent with it. Unproven facts are assumed to be
true while processing subsequent sentences, because they
represent new information about the design.
 Sentences in the structured language explanation are
verified based on their content. Statements about contact
are tested against the visual representation computed for
the state in question. Statements about motion or rotation
are tested against the qualitative mechanics analysis of the
sketched comic graph. Statements about physical state
(i.e., “is” statements) are tested against the conceptual
labels provided for glyphs in the comic graph. Statements
about causality are tested by assuming the causal
antecedent and seeing if (a) the causal effect is believed
and (b) that the causal antecedent is one of the assumptions
underlying belief in the causal effect, as found by
analyzing the dependencies in the underlying truth
maintenance system.
 When generating feedback for the explanation, the states
of facts in the structured language explanation are used to
generate part of the natural language response. (The rest is
from state transition verification.) Contradictory
statements lead to a contrast template being used, e.g.,
“You said that the stopper moves to the right, but I think it
will move to the left.” Unproven statements that should
have been derivable lead to a gap template being used, e.g.,
“You said that the stopper moves right, but it’s not clear
why that will happen.” If all statements that should be
provable are indeed proven, then Design Buddy simply
says “Everything you told me made sense.”

Exploratory Study

In Fall 2009 we performed an exploratory study to gather
formative feedback with undergraduate students taking an
engineering design and communications (EDC) class.
Here we focus on the following questions: (1) Can students
use the feedback provided by Design Buddy to produce
consistent explanations? (2) How much feedback is
provided by SVT versus SEA?

Procedure

The study involved seven participants, paid hourly, all
engineering undergraduate students taking EDC. One-on-
one interviews were conducted in single sessions lasting

between 45 minutes and 80 minutes depending on their
availability and interest in continuing.
 The participants used a tablet PC with CogSketch for the
experiment. Two kinds of data were collected: (1) Video
and audio were captured by screen-capture software (for 6
of the 7 students) and (2) the CogSketch sketch files
produced by the student over the course of the experiment.
Sketch files retain their edit history, and CogSketch can
replay the drawing of the sketch and export detailed timing
data for analysis.
 The experiment protocol consisted of four parts. First,
the students received a brief tutorial on pen-based
computing and CogSketch. Second, they were asked to
explain their current design class project to the interviewer,
while using CogSketch to draw it. (The purpose of this
step was to gather data about future breadth requirements
and to see what language they would use if unconstrained.)
The third step was a tutorial on Design Buddy, focusing on
using the interface to create explanations. The fourth step
tested the explanation system directly: Students were asked
to explain to Design Buddy how a retractable ball-point
pen works. The students were provided with a real pen to
handle and think about. The pen was opaque and students
were not allowed to disassemble it.

Preliminary Findings

On average students spent under 15 minutes combined on
the two tutorial sketches, which indicates that not much
training is required to use the interface. All of the students
were able to use Design Buddy to explain how the ink pen
might work. The average time to complete an explanation
was 38 minutes, with the shortest being 28 minutes and the
longest being 60 minutes.
 Each student drew a multi-state sketch, used the Tell
window, and went through several feedback iterations with
Design Buddy. On average, students went through 5.5
cycles of feedback, with the fewest being 3 and the most
being 8. Figure 5 shows two sketches of the pen made by
one student over the course of their session. The early
sketch is highly abstract. Design Buddy reported that it
didn’t seem like any of the parts moved. This is because
the student had initially drawn the pen as a single object.
The student realized that they needed to add more detail to
their sketch, so they redrew the pen to show the inner

Figure 5: Early sketch (above) contrasted with later version

(below). Student sketches changed as they interacted with Design

Buddy.

workings. Most of the students drew sketches detailing the
inner workings of the pen.

 One student got around this process; rather than
depicting how the pen worked internally, they depicted
what was happening to the pen as viewed from the exterior
(Figure 6). This more devious approach still kept the
student busy for several iterations as they tried using
different relations and annotations to express the motions.
 Often students assumed that Design Buddy’s visual
processing was as robust as a human partner. For example,
they would sometimes leave sizeable gaps between parts
that they meant to be in contact. Other times they would
forget that they needed to conceptually label a glyph.
Occasionally they ran across an actual bug in the program.
Each of these cases required the interviewer to explain
limitations of the program. While students found the
feedback itself clear, tracing back to the specific aspects of
their explanation that were responsible for a reported
problem was often difficult. We allowed the students to
try diagnosing the problems on their own until they got
stuck, at which point we stepped in. When it wasn’t
obvious to the experimenter either, we showed them how
to use CogSketch’s built-in reasoning browser to figure it
out definitively. This browser is not student-friendly: It
exposes the underlying predicate calculus form of
statements and includes many facts necessary for
implementing the reasoning but irrelevant to what the
student needs to know. We plan on adding a structured
explanation system [Forbus et al 1999] to provide a
filtered, student-friendly drill-down system to address this
problem.

 How much utility does Sequential Explanation Analysis
add over State Transition Verification? To explore this
question, we examined how often advice was provided by
each. Overall, students received 51% of their feedback
from SEA. Student 194 (Figure 7) received no SEA
feedback at all because their explanation was too complex
for the template sentences. The student wrote their
explanation in the Notes field for the sketch instead, which
was not accessible to Design Buddy.
 Having the students explain their design projects to the
experimenter, as opposed to Design Buddy, provided
information about their default communication strategies.
When explaining to the experimenter, students used

language more heavily than their sketches. When
explaining to Design Buddy, they put more information
into the sketch by adding conceptual labels, additional
states, and drawing forces. Students primarily used
structured language for describing motion. Students for
the most part had no suggestions for additions to the
structured language, though some did suggest alternate
phrasings for existing phrases such as “compresses”
instead of “is compressed”. Another student suggested
adding the ability to talk about multiple states at once.
Given that our goal is to help students learn to use sketches
to communicate, these results are encouraging.

Related Work

Argumentation and Explanation

In the Belvedere system [Suthers et al 2001], students used
a visual language to construct arguments which were then
critiqued based on their structure. However, the feedback
focused on the structure of the arguments and ignored the
actual content. Design Buddy, by contrast, incorporates a
model of some kinds of reasoning an expert does about
explanations for engineering designs.

Recognition-based approaches

Using sketch and speech as input, Bischel et al. [2009]
were able to train classifiers which distinguished between
strokes that were gestures versus strokes that were part of
the depiction of a device. The gestures included both
pointing to parts being referred to linguistically and for
indicating spatial features, such as direction of motion. We
observed both kinds of gestures when students were
communicating with the experimenter, which suggests that
adding support for gestures could increase the naturalness
of the interface. However, spoken language input is
problematic for many student environments, due to noise,
the inconvenience of a headset, and the need to avoid
disturbing others.
 Recognition-oriented sketch recognition can be used for
education, in circumstances where teaching people
conventions for drawing something are important. For
example, [Taele & Hammond, 2010] use sketching to teach
Mandarin Phonetic Symbols. As noted earlier, in
engineering design the shapes of parts in designs for
mechanical domains are determined by physics not by
convention, as they are for electronics and UML diagrams.

Discussion & Future Work

Helping engineering students practice giving explanations
via sketching will, both we and their instructors believe,
help them improve their ability to communicate. The
structured language interface provides a way for students
to communicate information that is not always easily
sketched, such as causal models. The new technique of
Sequential Explanation Analysis provides feedback about

Figure 6: A student abstracts out the middle of this ink pen.

Figure 7: Student 194’s explanation was very complex and

precise, and they were unable to explain it using the template

sentences.

the internal consistency of their explanation by comparing
the structured language explanation with the qualitative
mechanical analysis of their sketch. The pull-out study,
while only involving a small number of students, provides
strong evidence that the feedback Design Buddy already
provides can help students improve their explanations.
 While the progress described in this paper takes us
closer to our goal, there are still several extensions we plan
to make before attempting in-class experiments:
 Richer qualitative reasoning: Currently we require
students to draw every qualitative state explicitly in their
behavior. For simple designs this is reasonable, but as
designs get more complex, experienced designers leave out
“obvious” intermediate states. Design Buddy will need
more qualitative reasoning to fill in those missing states,
and to evaluate when they make assumptions that are
inconsistent with a student’s explanation. Moreover, some
design assignments use non-rigid materials, such as strings,
and fluids. We plan on extending our current qualitative
mechanics reasoner to incorporate qualitative process
theory [Forbus, 1984] to handle this, with Kim’s bounded
stuff ontology [Kim 1993] to handle fluids.
 Richer teleological vocabulary: The structured
language interface needs to be extended to describe the
purpose of the design, and explain how the behavior
(which is the current focus of explanation) leads to this
purpose being achieved.
 More types of feedback: Currently Design Buddy’s
feedback focuses only on consistency in the explanation.
Equally important is coverage: Does the explanation
account for all of the important choices in the design?
Simplicity and clarity are also important, as is detecting
circularities. We plan to extend Design Buddy to critique
explanations along these dimensions as well, as we scale
up to more complex designs.
 Additional studies planned: We plan to continue pull-
out studies for formative evaluation, with the goal of
moving to in-class experiments. We are also continuing to
observe instructors providing feedback about design
sketches, both in classroom group work and in one-on-one
interactions, to improve Design Buddy’s feedback.

Acknowledgements

This research was supported by the Spatial Intelligence and

Learning Center, NSF SLC Grant SBE-0541957. We

thank Bruce Ankenman, John Anderson, and Stacy

Benjamin for their feedback and help, and for allowing us

to work with their EDC students.

References

[Bischel et al., 2009] Bischel, D., Stahovich, T., Davis, R.,
Adler, A., & Peterson, E. (2009). Combining speech and
sketch to interpret unconstrained descriptions of
mechanical devices. International Joint Conference on
Artificial Intelligence. Pasadena, CA.

[Cohn 1996] Cohn A. Calculi for qualitative spatial
reasoning. In Artificial Intelligence and Symbolic
Mathematical Computation, LNCS 1138, eds: J Calmet,
J A Campbell, J Pfalzgraph, Springer Verlag, (1996)
124-143.

[Forbus, 1984] Forbus, K. (1984). Qualitative process
theory. Artificial Intelligence, 24, 85-168.

[Forbus et al 1999] Forbus, K., Whalley, P., Everett, J.,
Ureel, L., Brokowski, M., Baher, J., Kuehne, S. (1999).
CyclePad: an articulate virtual laboratory for engineering
thermodynamics. Artificial Intelligence. 114 (1-2): 297-
347.

[Forbus et al 2003] Forbus K., Usher, J. and Chapman, V.
(2003). Qualitative spatial reasoning about sketch maps.
Proceedings of the Fifteenth Annual Conference on
Innovative Applications of Artificial Intelligence,
Acapulco, Mexico.

[Forbus et al., 2008] Forbus, K., Usher, J., Lovett, A.,
Lockwood, K., & Wetzel, J. (2008). CogSketch: Open-
domain sketch understanding for cognitive science
research and for education. Proceedings of the Fifth
Eurographics Workshop on Sketch-Based Interfaces and
Modeling. Annecy, France.

[Frank & Szekely, 1998] Frank, M. and Szekely, P.
Adaptive Forms: An interaction paradigm for entering
structured data. In Proceedings of IUI-1998.

[Hammond & Davis, 2005] Hammond, T. & Davis, R.
2005 LADDER, a sketching language for user interface
developers. Computers & Graphics 29 (518-532).

[Kim 1993] Kim, H. (1993). Qualitative reasoning about
fluids and mechanics. Ph.D. dissertation and ILS
Technical Report, Northwestern University. Evanston,
IL.

[Lovett et al 2009] 1. Lovett, A., Tomai, E., Forbus, K. &
Usher, J. (2009) Solving Geometric Analogy Problems
through Two-Stage Analogical Mapping. Cognitive
Science.

[Nielsen 1988] Nielsen, P.E. (1988). A qualitative
approach to rigid body mechanics. (Tech. Rep. No.
UIUCDCS-R-88-1469; UILU-ENG-88-1775). Urbana,
Illinois: University of Illinois at Urbana-Champaign,
Department of Computer Science.

[Suthers et.al. 2001] Suthers, D., Connely, J., Lesgold, A.,
Paolucci, M., Toth, E.E., Weiner, A., (2001).
Representational and Advisory Guidance for Students
Learning Scientific Inquiry. In: Forbus, K., and
Feltovich, P. Smart machines in education: The coming
revolution in educational technology. Menlo Park, CA:
AAAI/MIT Press, pp7-35.

[Taele & Hammond, 2010] Taele, P. and Hammond, T.
2010. LAMPS: A Sketch Recognition-Based Teaching
Tool for Mandarin Phonetic Symbols I. Visual
Languages and Computation.

[Wetzel & Forbus, 2009] Wetzel, J. and Forbus, K. (2009).
Automated Critique of Sketched Mechanisms.
Proceedings of the 21st Innovative Applications of
Artificial Intelligence Conference. Pasadena, CA.

http://www.qrg.northwestern.edu/papers/Files/QSMAP03_distribution.pdf

